Referencias

  1. Abel, F., Gao, Q., Houben, G. J., & Tao, K. (2011). Semantic enrichment of twitter posts for user profile construction on the social web. In The Semantic Web: Research and Applications (pp. 375-389). Springer Berlin Heidelberg.
  2. Allcott, H., y Gentzkow, M. (2017). Social media and fake news in the 2016 election.Journal of economic perspectives,31(2), 211–36.
  3. Alonso, J. M., Barro, S., Bugarín, A., van Deemter, K., Gardent, C., Gatt, A., Reiter, E., Sierra, C., Theune, M., Tintarev, N., Yano, H., & Budzynska, K. (2020, September). Interactive Natural Language Technology for Explainable Artificial Intelligence. F. Heintz et al. (Eds.): TAILOR 2020, LNAI 12641, pp. 63–70, 2021. https://doi.org/10.1007/978-3-030-73959-1_5
  4. Balahur, A.; Hermida, J.M.; Montoyo, A. (2012) Building and Exploiting EmotiNet, a Knowledge Base for Emotion Detection Based on the Appraisal Theory Model. IEEE Transactions on Affective Computing, Vol: 3 , Num: 1 (Pp. 88-101).
  5. Barikeri, S.; A. Lauscher, I. Vulc, and G. Glava (2021) “REDDITBIAS: A Real-World Resource for Bias Evaluation and Debiasing of Conversational Language Models” in Proceedings of the 59th Annual Meeting of the Association for Computational Linguisticsand the 11th International Joint Conference on Natural Language Processing, pages 1941–1955.
  6. Baeza-Yates,R., & Ribeiro-Neto, B. (2011). Modern Information Retrieval-The Concepts and Technology behind Search.
  7. Bastos, M. T., y Mercea, D. (2019). The Brexit botnet and user-generated hyper-partisan news. Social Science Computer Review,37(1), 38-54.
  8. Boldrini, e., Balahur, A., Martínez-Barco, P. and Montoyo, A. (2012) Using EmotiBlog to Annotate and Analyse Subjectivity in the New Textual Genres. Data Mining and Knowledge Discovery , Vol: 25 , Num: 3, (Pp. 603-634)
  9. Bolukbasi, T., Chang, K., Zou, J., Saligrama, V. and  Kalai, A. (2016). Man is to Computer Programmer as Woman is to Homemaker? Debiasing Word Embeddings. Advances in neural information processing systems 29 (2016): 4349-4357.
  10. Bovet, A., Makse, H. A. (2019). Influence of fake news in Twitter during the 2016 US presidential election. Nature Communications,10(1):7.
  11. Bruner, J. S., Linaza, J. L. (1984). Acción, pensamiento y lenguaje (Vol. 1). Madrid: Alianza.
  12. Burke, E., Hampsher-Monk, I. (2013). Revolutionary writings: Reflections on the revolution in France and the first letter on a regicide peace. In Revolutionary Writings: Reflections on the Revolution in France and the First Letter on a Regicide Peace. Cambridge University Press. https://doi.org/10.1017/CBO9781139046268
  13. Cambridge Dictionary, n.d. Online resource: https://dictionary.cambridge.org/dictionary/english/debunk (accessed: 26-10-2021)
  14. Canales, L., & Martínez-Barco, P. (2014). Emotion Detection from text: A Survey. Processing in the 5th Information Systems Research Working Days (JISIC 2014), 37.
  15. Celikyilmaz, Asli  Elizabeth Clark, and Jianfeng Gao. (2020). “Evaluation of text generation: A survey”. arXiv preprint https://arxiv.org/abs/2006.14799
  16. Chinchor, N. (1998). Overview of muc-7. In Proceedings of the Seventh Message Understanding Conference (MUC-7).
  17. Ciampaglia, G. L., Shiralkar, P., Rocha, L. M., Bollen, J., Menczer, F., Flammini, A. (2015, jun). Computational Fact Checking from Knowledge Networks.PLOS ONE,10 (6), e0128193. doi: 10.1371/journal.pone.0128193
  18. Conroy, N. J., Rubin, V. L., y Chen, Y. (2015). Automatic deception detection: Methods for finding fake news. Proceedings of the 78th annual meeting: Information science with impact: Research in and for the community (p. 82). American Society for Information Science.
  19. Cowie, J. and Wilks, Y. (1996) Information Extraction
  20. Devezas, J. L., Nunes, S., Guillén, A., Gutiérrez, Y., & Muñoz, R. (2018). FEUP at TREC 2018 Common Core Track-Reranking for Diversity using Hypergraph-of-Entity and Document Profiling. In TREC.
  21. Devlin, J., Chang, M.W., Lee, K., and Toutanova, K. (2019). Bert: Pre-training of deep bidirectional transformers for language understanding. In Proc. NAACL-HLT, 2019, pp. 1–16.
  22. Dias, P. (2014). From “infoxication” to “infosaturation” : a theoretical overview of the congnitive and social effects of digital immersion. Primer congreso internacional infoxicación : mercado de la información y psique, libro de actas (pp. 67–84).
  23. Díaz Martínez, C., Días García, C., and Navarro Sustaeta, P. (2020). Sesgos de género ocultos en los macrodatos y revelados mediante redes neuronales: ¿hombre es a mujer como trabajo es a madre?. Rev.Esp.Investig.Sociol. ISSN-L: 0210-5233. Nº 172, Octubre – Diciembre 2020, pp. 41-60.
  24. Domo (2021). Data never sleepy v. 9.0. Report. Domo.org  Data Never Sleeps 9.0. Domo.com url: https://www.domo.com/learn/infographic/data-never-sleeps-9.
  25. Došilović, F. K., Brčić, M., and Hlupić, N. «Explainable artificial intelligence: A survey,» 2018 41st International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO), 2018, pp. 0210-0215, doi: 10.23919/MIPRO.2018.8400040.
  26. D’Ulizia A, Caschera MC, Ferri F, Grifoni P. (2021). “Fake news detection: a survey of evaluation datasets”. PeerJ Computer Science PeerJ Comput. Sci. 7:e518 DOI 10.7717/peerj-cs.518
  27. Duh, K., Kirchhoff, K. (2004). Automatic learning of language model structure. In Proceedings of the 20th international conference on Computational Linguistics (COLING ’04). Association for Computational Linguistics, Stroudsburg, PA, USA, Article 148 .
  28. Edelmann, A, Wolf, T., Montagne, D., Bail, C.A. (2020). Computational Social Science and Sociology. Annual Review of Sociology, vol 46, pp. 61-81.
  29. Estrada-Cuzcano, A., Alfaro-Mendives, K., y Saavedra-Vásquez, V. (2020). Disinformation and misinformation, post-truth and fake news: Conceptual precisions, differences, similarities and juxtapositions.Informacion, Cultura y Sociedad (42), 93–106. doi: doi: 10.34096/ics.i42.7427
  30. Faille, J., Gatt, A., Gardent, C. (2020) The Natural Language Pipeline, Neural Text Generation and Explainability. Proceedings of the 2nd Workshop on Interactive Natural Language Technology for Explainable Artificial Intelligence (NL4XAI 2020) (pp. 16-21)
  31. Fu, J., Liu, P., Neubig, G. (2020) Interpretable Multi-dataset Evaluation for Named Entity Recognition. Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020) (pp. 6058–6069)
  32. Gitari, N.D. Zhang Zuping, Hanyurwimfura Damien, and Jun Long.(2015). A lexicon-based approach for hate speech detection. International Journal of Multimedia and Ubiquitous Engineering, 10(4), (pp. 215–230).
  33. Grace, G. W. (2018). The linguistic construction of reality. Routledge.
  34. Gutiérrez, Y.; Vázquez, S.; Montoyo, A. (2011). Word Sense Disambiguation: A Graph-Based Approach Using N-Cliques Partitioning Technique, Lecture Notes in Computer Science , Vol: 6716. (Pp. 112-124).
  35. Gutiérrez,  Y.,  Vázquez,  S.,  &  Montoyo,  A.  (2016).  A  semantic  framework  for  textual  data  enrichment.  Expert  Systems  with  Applications,57,  248– 269.
  36. Gutiérrez Y., Vázquez S. & Montoyo A. (2017) Spreading semantic information by Word Sense Disambiguation. Knowledge-Based Systems. Volume 132. (pp 47-61).
  37. Gutiérrez, Y., Tomas, D., & Moreno, I. (2019). Developing an ontology schema for enriching and linking digital media assets. Future Generation Computer Systems, 101, 381-397.
  38. Hooper, V. (2018). Fake news and social media: The role of the receiver. 5th european conference on social media 2018(p. 62).
  39. Howcroft, David M; Anja Belz, Miruna-Adriana Clinciu, Dimitra Gkatzia, Sadid A Hasan, Saad Mahamood, Simon Mille, Emiel van Miltenburg, Sashank Santhanam, and Verena Rieser. (2020). “Twenty years of confusion in human evaluation: NLG needs evaluation sheets and standardised definitions”. In Proc INLG, pages 169–182.
  40. Huang, B., y Carley, K. M. (2020). Disinformation and misinformation on twitter during the novel coronavirus outbreak.arXiv preprint arXiv:2006.04278.
  41. Huyen, C. (2019) “Evaluation Metrics for Language Modeling”, The Gradient https://thegradient.pub/understanding-evaluation-metrics-for-language-models/
  42. Issenberg, S. (2012).The victory lab: The secret science of winning campaigns. Crown.
  43. Kaiji Lu, Piotr Mardziel, Fangjing Wu, Preetam Amancharla, and Anupam Datta. 2018. Gender bias in neural natural language processing. In Logic, Language, and Security, volume 12300 of Lecture Notes in Computer Science, pages 189–202, Springer.
  44. Kahle, L. R., & Valette-Florence, P. (2012). Marketplace lifestyles in an age of social media: theory and methods. ME Sharpe
  45. Konstantinou, N., & Spanos, D. E. (2015). Introduction: Linked Data and the Semantic Web. In Materializing the Web of Linked Data. Springer International Publishing. (pp. 1-16).
  46. Kvetanová, Z., Kačincová Predmerská, A., & Švecová, M. (2020). Debunking as a Method of Uncovering Disinformation and Fake News. DOI: 10.5772/intechopen.93738
  47. Laparra, E., Agerri R.,, Aldabe, I., Rigau, G. (2017): Multi-lingual and Cross-lingual timeline extraction. Knowl.-Based Syst. 133, (pp. 77-89)
  48. Lécué, F., Tucker, R., Bicer, V., Tommasi, P., Tallevi-Diotallevi, S., & Sbodio, M. (2014). Predicting severity of road traffic congestion using semantic web technologies. In The Semantic Web: Trends and Challenges (pp. 611-627). Springer International Publishing.
  49. Liu, B. (2007). Web data mining: exploring hyperlinks, contents, and usage data. Springer Science & Business Media.
  50. Lloret, E.; Balahur, A.; Gómez, J.M.; Montoyo, A.; Palomar, A. (2012). Towards a Unified Framework for Opinion Retrieval, Mining and Summarization. Journal of Intelligent Information Systems , Vol: 39 , Num: 3. (Pp. 711-747)
  51. Moscadelli, A., Albora, G., Biamonte, M. A., Giorgetti, D., Innocenzio, M., Paoli, S., Lorini, C., Bonanni, P., y Bonaccorsi, G. (2020, aug). Fake news and covid-19 in Italy: Results of a quantitative observational study. International Journal of Environmental Research and Public Health,17(16), 1–13. doi: 10.3390/IJERPH17165850
  52. Montoyo, A.; Martínez-Barco, P.; Balahur, A. (2012) Subjectivity and Sentiment Analysis: An Overview of the Current State of the Area and Envisaged Developments, Decision Support Systems , Vol: 53 , Num: 4 (Pp. 675-679).
  53. Narwal, B. (2018, oct). Fake News in Digital Media. Proceedings – IEEE 2018 International Conference on Advances in Computing, Communication Control and Networking, ICACCCN 2018, 977–981.doi:  10.1109/ICACCCN.2018.8748586
  54. Navarro-Colorado, B., Saquete, E. (2016). Cross-document event ordering through temporal, lexical and distributional knowledge. Knowledge-Based Systems, 110 (pp. 244-254).
  55. OpenAI (2019). Better Language Models and Their Implications. OpenAI. 2019-02-14. Retrieved 2019-08-25.
  56. Open Sourcing BERT (2019). State-of-the-Art Pre-training for Natural Language Processing. Google AI Blog. Retrieved 2019-08-25.
  57. Oshikawa, R., Qian, J., Wang, W.Y. (2020) “A survey on natural language processing for fake news detection”. In: Proceedings of the 12th Language Resources and Evaluation Conference, LREC 2020, pp. 6086–6093.
  58. Oxford dictionary of phrase and fable. (2006). Oxford University Press.
  59. Peters, M.E., Neumann, M., Iyyer, M., Gardner, M., Clark, C., Lee, K. and Zettlemoyer, L. (2018). Deep contextualized word representations. arXiv:1802.05365[Online]. Available: http://arxiv.org/abs/1802.05365
  60. Piad-Morffis, A., Gutiérrez, Y., Almeida-Cruz, Y., Muñoz, R. (2020) A Computational Ecosystem to Support eHealth Knowledge Discovery Technologies in Spanish. Journal of Biomedical Informatics, 103517.
  61. Polosukhin, I., Kaiser, L., Gomez, A.N., Jones, L., Uszkoreit, J., Parmar, N., Shazeer, N., Vaswani, A. (2017). Attention Is All You Need. arXiv:1706.03762 [cs.CL].
  62. Popat, K.,  Mukherjee, S., Yates, A.,  Weikum, G.. DeClarE: Debunking Fake News and False Claims using Evidence-Aware Deep Learning. Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, pages 22–32. Brussels, Belgium, October 31 – November 4, 2018
  63. Proctor, R. N. and Schiebinger, L. (2008). Agnotology: the Making and Unmaking of Ignorance. Stanford, California: Stanford University Press.
  64. Quian, Y., Muaz, U., Zhang, B., Hyun, J.W. (2019). Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics: Student Research Workshop, pages 223–228. Florence, Italy, July 28 – August 2, 2019.
  65. Quirk, R., Greenbaum, S., Leech, G., and Svartvik, J. (1985). A Comprehensive Grammar of the English Language. Longman, London.
  66. Raffel, C., Shazeer, N., Roberts, A., Lee, K.,  Narang, Sh., Matena, M., Zhou, Y., Li, W. and Liu, P.J. (2020). Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer. Journal of Machine Learning Research, 21 (140), pp 1-67.
  67. Radford, A. (2018). Improving language understanding by generative pretraining. Tech. Rep., 2018.
  68. Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., and Sutskever, I. (2019). Language models are unsupervised multitask learners OpenAI Blog, vol. 1, no. 8, p. 9.
  69. Ravi Teja Gadde, Ivan Bulyko. Towards Continual Entity Learning in Language Models for Conversational Agents. Conference on Neural Information Processing Systems (NeurIPS). 05 Aug 2021
  70. Reiter, E. (2019) Natural Language Generation Challenges for Explainable AI. arXiv:1911.08794  (2019) http://arxiv.org/abs/1911.08794
  71. Reiter, E., Dale, R,. (2000). Building natural language generation systems. Cambridge university press.
  72. Rommetveit, R. (2014). Words, Meaning, and Messages: Theory and Experiments in Psycholinguistics. Academic Press.
  73. Rodríguez, R. F., Barrio, M. G. (2015). Infoxication: Implications of the phenomenon in journalism.Revista de Comunicación de la SEECI,38, 141–181. doi: 10.15198/seeci.2015.38.141-181.
  74. Rubin, V.L., Vashchilko, T. (2012). Identification of Truth and Deception in Text: Application of Vector Space Model to Rhetorical Structure Theory. Proceedings of the EACL 2012 Workshop on Computational Approaches to Deception Detection. Avignon, France. (pp.97–106)
  75. Rubin, V. L. (2019). Disinformation and misinformation triangle. Journal of Documentation,75(5), 1013–1034.
  76. Saquete, E., Tomás, D., Moreda, P., Martínez-Barco, P., y Palomar, M. (2020). Fighting post-truth using natural language processing: A review and open challenges. Expert Systems with Applications,141.
  77. Savoldi, B., Gaido, M., Bentivogli, L., Negri, M., and Turchi, M. (2021). Transactions of the Association for Computational Linguistics, vol. 9, pp. 845–874, 2021.
  78. Shafqat W., Lee, S., Malik, S., Kim, H.. (2016) The Language of Deceivers: Linguistic Features of Crowdfunding Scams. WWW’16 Companion, April 11–15, 2016, Montréal, Québec, Canada. ACM
  79. Shu, K., Sliva, A., Wang, S., Tang, J., y Liu, H. (2017). Fake news detection on social media: A data mining perspective. ACM SIGKDD explorations newsletter, 19(1), 22–36.
  80. Sonnenschein, A. R., Hofmann, S. G., Ziegelmayer, T., & Lutz, W. (2018). Linguistic analysis of patients with mood and anxiety disorders during cognitive behavioral therapy. Cognitive behaviour therapy, (pp. 1-13).
  81. Stanovsky, G, Smith, N.A. and Zettlemoyer, L. (2019). Evaluating Gender Bias in Machine Translation. Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics (ACL).  pp. 1679–1684. July, 2019. Florence, Italy.
  82. Tavernisen, S. (2019). As fake news spreads lies, more readers shrug at the truth. New York Times. http://nyti.ms/2lw56HN
  83. Tjong Kim Sang, E.F., De Meulder, F. (2003). Introduction to the CoNLL-2003 Shared Task: Language-Independent Named Entity Recognition. CONLL-2003
  84. Tuana, N. and Sullivan, Sh. (2006). Introduction: Feminist Epistemologies of Ignorance. Hypatia, 21(3): 1-19.
  85. Tudjmanand, M., Mikelic Preradovic, N. (2003). Information science: Science about information. Proceedings of informing science & it education (p. 1513-1527)
  86. Vafeiadis, M., Bortree, D.S., Buckley, C., Diddi, P. and Xiao, A. (2020), «Refuting fake news on social media: nonprofits, crisis response strategies and issue involvement», Journal of Product & Brand Management, Vol. 29 No. 2, pp. 209-222. https://doi.org/10.1108/JPBM-12-2018-2146
  87. Vedula, N., Parthasarathy, S. (2021) FACE-KEG: Fact Checking Explained using KnowledgE Graphs. Proceedings of the 14th ACM International Conference on Web Search and Data Mining (WSDM ’21). Association for Computing Machinery, New York, NY, USA, 526–534. DOI:https://doi.org/10.1145/3437963.3441828
  88. Vivek Srivastava, Stephen Pilli, Savita Bhat, Niranjan Pedanekar, Shirish Karande. What BERTs and GPTs know about your brand? Probing contextual language models for affect associations. Proceedings of Deep Learning Inside Out (DeeLIO): The 2nd Workshop on Knowledge Extraction and Integration for Deep Learning Architectures, pages 119–128 Online, June 10, 2021.
  89. Vygotski, L. S. (1999). Pensamiento y lenguaje: teoría del desarrollo cultural de las funciones psíquicas. Fausto.
  90. Wallach, H. (2016). Computational Social Science. Computational Social Science, 307.
  91. Wardle, C., y Derakhshan, H. (2017). INFORMATION DISORDER : Toward an interdisciplinary framework for research and policy making Information Disorder Toward an interdisciplinary framework for research and policy-making. URL: www.coe.int
  92. Wiebe, J., Wilson, T., Bruce, R., Bell, M., and Martin, M. (2004). Learning subjective language. Computational Linguistics, 30(3):277–308.
  93. Yangfeng Ji, Chenhao Tan, Sebastian Martschat, Yejin Choi, Noah A. Smith. Dynamic Entity Representations in Neural Language Models. Conference on Empirical Methods in Natural Language Processing (EMNLP), 2017
  94. Zhao, J., Wang, T.,  Yatskar, M., Ordonez, V., and Chang, K.. (2018). Gender bias in coreference resolution: Evaluation and debiasing methods. In Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers), pages 15–20, New Orleans, USA.